Wednesday, 30 January 2019

Compressed domain image classification using a multi-rate neural network. (arXiv:1901.09983v1 [cs.CV])

Compressed domain image classification aims to directly perform classification on compressive measurements generated from the single-pixel camera. While neural network approaches have achieved state-of-the-art performance, previous methods require training a dedicated network for each different measurement rate which is computationally costly. In this work, we present a general approach that endows a single neural network with multi-rate property for compressed domain classification where a single network is capable of classifying over an arbitrary number of measurements using dataset-independent fixed binary sensing patterns. We demonstrate the multi-rate neural network performance on MNIST and grayscale CIFAR-10 datasets. We also show that using the Partial Complete binary sensing matrix, the multi-rate network outperforms previous methods especially in the case of very few measurements.



from cs updates on arXiv.org http://bit.ly/2WtuSeM
//

Related Posts:

0 comments:

Post a Comment