Channel interpolation is an essential technique for providing high-accuracy estimation of the channel state information (CSI) for wireless systems design where the frequency-space structural correlations of MIMO channel are typically hidden in matrix or tensor forms. In this letter, a modified extreme learning machine (ELM) that can process tensorial data, or ELM model with tensorial inputs (TELM), is proposed to handle the channel interpolation task. The TELM inherits many good properties from ELMs. Based on the TELM, the Tucker decomposed extreme learning machine (TDELM) is proposed for further improving the performance. Furthermore, we establish a theoretical argument to measure the interpolation capability of the proposed learning machines. Experimental results verify that our proposed schemes can achieve comparable mean squared error (MSE) performance against the traditional ELMs but with 15% shorter running time, and outperform the other methods for a 20% margin measured in MSE for channel interpolation.
from cs updates on arXiv.org http://bit.ly/2BPpBoo
//
0 comments:
Post a Comment