Digital camera pipelines employ color constancy methods to estimate an unknown scene illuminant, enabling the generation of canonical images under an achromatic light source. By taking advantage of large amounts of labelled images, learning-based color constancy methods provide state-of-the-art estimation accuracy. However, for a new sensor, data collection is typically arduous, as it requires both imaging physical calibration objects across different settings (such as indoor and outdoor scenes), as well as manual image annotation to produce ground truth labels. In this work, we address sensor generalisation by framing color constancy as a meta-learning problem. Using an unsupervised strategy driven by color temperature grouping, we define many related, yet distinct, illuminant estimation tasks, aggregating data from four public datasets with different camera sensors and diverse scene content. Experimental results demonstrate it is possible to produce a few-shot color constancy method competitive with the fully-supervised, camera-specific state-of-the-art.
from cs updates on arXiv.org https://ift.tt/2KGBbGt
//
0 comments:
Post a Comment