This paper presents an extension of the Stochastic Answer Network (SAN), one of the state-of-the-art machine reading comprehension models, to be able to judge whether a question is unanswerable or not. The extended SAN contains two components: a span detector and a binary classifier for judging whether the question is unanswerable, and both components are jointly optimized. Experiments show that SAN achieves the results competitive to the state-of-the-art on Stanford Question Answering Dataset (SQuAD) 2.0. To facilitate the research on this field, we release our code: https://ift.tt/2Q8w43b.
from cs updates on arXiv.org https://ift.tt/2ONPn1v
//
0 comments:
Post a Comment